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1. (a) Find the radius of convergence of the series:

∞∑
k=0

(−1)k2k+1xk.

Solution: Using the Ratio Test, we get:

L = lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣(−1)k+12k+2xk+1

(−1)k2k+1xk

∣∣∣∣
= lim

k→∞
|−2x| = 2|x|.

Note that the series converges for L < 1, that is, 2|x| < 1, which is equivalent
to |x| < 1

2
. Thus, the radius of convergence is 1

2
.

(b) You are given the formula for the sum of a geometric series, namely:

1 + r + r2 + . . . =
1

1− r
, |r| < 1.

Use this fact to evaluate the series in part (a).

Solution: We have that:

∞∑
k=0

(−1)k2k+1xk = 2
∞∑
k=0

(−1)k2kxk = 2
∞∑
k=0

(−2x)k

= 2

(
1

1− (−2x)

)
( by the geometric series formula)

=
2

1 + 2x
, for |x| < 1/2.

(c) Express the Taylor series of the function:

f(x) = ln(1 + 2x)

about x = 0 in summation notation.
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Solution: First note that:

f ′(x) =
2

1 + 2x
= 2

(
1

1− (−2x)

)
= 2

(
∞∑
k=0

(−2x)k

)
=
∞∑
k=0

(−1)k2k+1xk,

for |x| < 1/2. Integrating terms by terms, we get:

ln(1 + 2x) =
∞∑
k=0

(−1)k2k+1

∫
xk dx+ C =

∞∑
k=0

(−1)k2k+1 x
k+1

k + 1
+ C,

for |x| < 1/2. To solve for C, for x = 0 (which is in the interval of convergence),
we get:

ln(1) =
∞∑
k=0

(−1)k2k+1 0k+1

k + 1
+ C ⇒ 0 = C.

Hence,

ln(1 + 2x) =
∞∑
k=0

(−1)k2k+1 x
k+1

k + 1
,

for |x| < 1/2.

2. (a)
∞∑
k=1

1√
k
e−
√
k.

Solution: Using Integral Test with f(x) = 1√
x
e−
√
x, we get:∫ ∞

1

f(x) dx = lim
b→∞

∫ b

1

1√
x
e−
√
x dx.

Using a direct substitution with u = −
√
x, and du = − 1

2
√
x
dx, we get:

lim
b→∞

∫ −√b
−1

−2eu du = lim
b→∞
−2eu |−

√
b

−1 = lim
b→∞
−2e−

√
b + 2e−1 = 2e−1.

Since
∫∞
1
f(x) dx converges, by the Integral Test, the series also converges.

(b)
∞∑
k=1

k4 − 2k3 + 2

k5 + k2 + k
.

Solution: Using Limit Comparison Test with
∞∑
k=1

1

k
, which diverges by the
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p-series Test, we have that:

lim
k→∞

∣∣∣∣akbk
∣∣∣∣ = lim

k→∞

∣∣∣∣k4 − 2k3 + 2

k5 + k2 + k
· k
∣∣∣∣ = lim

k→∞

∣∣∣∣ 1− 2/k + 2/k4

1 + 1/k3 + 1/k4

∣∣∣∣ = 1.

Thus, either both series converge or both diverge. Since
∞∑
k=1

1

k
diverges, so

does
∞∑
k=1

k4 − 2k3 + 2

k5 + k2 + k
.

(c)
∞∑
k=1

2k(k!)2

(2k)!
.

Solution: We use the Ratio Test,

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣2k+1((k + 1)!)2

(2(k + 1))!
· (2k)!

2k(k!)2

∣∣∣∣
= lim

k→∞

∣∣∣∣∣2k+1

2k
·
(

(k + 1)!

k!

)2

· (2k)!

(2k + 2)!

∣∣∣∣∣
= lim

k→∞

∣∣∣∣ 2(k + 1)2

(2k + 1)(2k + 2)

∣∣∣∣ =
1

2
< 1.

Thus, by the Ratio Test, the series converges.

3. (a) Compute the following indefinite integral:∫
sin(ln(x)) dx.

Solution: Using direct substitution with t = ln(x), (so x = et), and dt = dx
x

(so dx = et dt), we get: ∫
sin(ln(x)) dx =

∫
et sin(t) dt.

Using integration by parts with u = et, du = et dt, dv = sin(t) dt, v = − cos(t),
we get: ∫

et sin(t) dt = −et cos(t) +

∫
et cos(t) dt.
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For the remaining integral, we use integration by parts again with u1 = et,
du1 = et dt, dv1 = cos(t) dt, v = sin(t), we get:∫

et cos(t) dt = et sin(t)−
∫
et sin(t) dt.

Thus,∫
et sin(t) dt = −et cos(t) +

∫
et cos(t) dt = −et cos(t) + et sin(t)−

∫
et sin(t) dt

⇒ 2

∫
et sin(t) dt = −et cos(t) + et sin(t) + C

⇒
∫
et sin(t) dt = −e

t cos(t)

2
+
et sin(t)

2
+ C.

In terms of x, we get:∫
sin(ln(x)) dx = −x cos(ln(x))

2
+
x sin(ln(x))

2
+ C.

(b) Evaluate the following definite integral:∫ 1

0

1

x2 − 5x+ 6
dx.

Solution: Note that the denominator x2 − 5x + 6 can be factored as (x −
2)(x − 3), which are zero at x = 2 and x = 3. So, the integrand is, in fact,
continuous on the interval [0, 1], and this is not an improper integral. Using
partial fractions, we get:

1

x2 − 5x+ 6
=

A

x− 2
+

B

x− 3
=
A(x− 3) +B(x− 2)

(x− 2)(x− 3)
=

(A+B)x+ (−3A− 2B)

(x− 2)(x− 3)
.

So, A + B = 0 and −3A − 2B = 1. We get A = −B, and thus, −3A − 2B =
−A = 1 yields A = −1 and B = 1. Hence,∫ 1

0

1

x2 − 5x+ 6
dx =

∫ 1

0

(
− 1

x− 2
+

1

x− 3

)
dx = (− ln |x− 2|+ ln |x− 3|) |10

= (− ln 1 + ln 2)− (− ln 2 + ln 3) = 2 ln 2− ln 3.
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4. Consider the function:

F (x) =


a, if x < 0,

k arctanx, if 0 ≤ x ≤ 1,

b, if x > 1.

(a) Find the values of a, k and b for which F is a valid cumulative distribution function
of a continuous random variable. Then sketch the graph of F .

Solution: Firstly, for a cumulative distribution function, we need:

• 0 = lim
x→−∞

F (x) = a, so a = 0.

• 1 = lim
x→∞

F (x) = b, so b = 1.

• F (x) is continuous on R. In particular, in order to be continuous at
x = 1, then:

lim
x→1−

F (x) = F (1) = lim
x→1+

F (x)

k arctan(1) = 1

⇒ k =
4

π
.

• F (x) is a non-decreasing function since its derivative

F ′(x) =


0, if x < 0,

4
π(1+x2)

, if 0 ≤ x ≤ 1,

0, if x > 1.

is non-negative for all x.

So, a = 0, b = 1, and k = 4/π.

(b) Let X be a continuous random variable with cumulative distribution function F (x)
as given in part (a). Find the probability density function of X.

Solution: Note that if f(x) is the probability density function of X, then
f(x) = F ′(x), so:

f(x) =


0, if x < 0,

4
π(1+x2)

, if 0 ≤ x ≤ 1,

0, if x > 1.
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5. (a) If

F (x) =

∫ x

0

ln(2 + sin(t)) dt and G(y) =

∫ 0

y

ln(2 + sin(t)) dt,

find F ′
(
π
2

)
and G′

(
π
2

)
.

Solution: Using the Fundamental Theorem of Calculus Part I, we have:

F ′(x) = ln(2 + sin(x))⇒ F ′
(π

2

)
= ln(2 + sin

(π
2

)
) = ln(3),

G′(y) = − ln(2 + sin(y))⇒ G′
(π

2

)
= − ln(2 + sin

(π
2

)
) = − ln(3).

(b) Now define:

H(x, y) =

∫ x

y

ln(2 + sin t) dt.

Find the first derivatives of H and use this to compute ∇H
(
π
2
, π
2

)
.

Solution: Using the Fundamental Theorem of Calculus Part I, we get:

Hx(x, y) = ln(2 + sin(x)), Hy(x, y) = − ln(2 + sin(y)).

We have that:

∇H
(π

2
,
π

2

)
= 〈Hx

(π
2
,
π

2

)
, Hy

(π
2
,
π

2

)
〉

= 〈ln(2 + sin
(π

2

)
),− ln(2 + sin

(π
2

)
)〉

= 〈ln(3),− ln(3)〉.

6. According to market research, the demand curve for a local pizza restaurant satisfies
the following relation: if p is the price of a pizza (in dollars), and q is the number of
pizzas sold per day, then

p2 + 4q2 = 800.

The restaurant owners want to determine what price the restaurant should charge for
each pizza in order to make their daily revenue as high as possible.

(a) Formulate this as a constrained optimization problem, clearly stating the objective
function and the constraint.
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Solution: We want to find the value of p such that the objective function
R(p, q) = pq is maximized subject to the constraint that g(p, q) = p2 + 4q2 −
800 = 0.

(b) Use the method of Lagrange multipliers to solve the problem in part (a). There is
no need to justify that the solution you obtained is the absolute maximum or min-
imum. A solution that does not use the method of Lagrange multipliers
will receive no credit, even if the answer is correct.

Solution: Using the method of Lagrange multipliers, we need to solve the
following system:

Rp = λgp,

Rq = λgq,

g(p, q) = 0,

⇒


q = λ2p,

p = λ8q,

p2 + 4q2 − 800 = 0,

where p > 0 and q > 0. Substituting p = λ8q into q = λ2p, we get:

q = λ2(λ8q) = qλ216⇒ q(1− 4λ)(1 + 4λ) = 0.

Note that q = 0 is not in the domain, so we only consider two cases:

• If λ = 1/4, then p = λ8q = 2q. So, p2 + 4q2− 800 = 8q2− 800 = 0 which
yields q = 10, and p = 20.

• If λ = −1/4, then p = λ8q = −2q. So, p2 + 4q2 − 800 = 8q2 − 800 = 0,
and q = 10, and p = −20 (which is not in the domain since p must be
positive).

Thus, the only solution we get is q = 10, p = 20 and λ = 1/4. So, the restaurant
should charge $20 for each pizza in order to maximize daily revenue subject to
the constraint that p2 + 4q2 = 800.

7. (a) Find all critical points of the function:

f(x, y) = xyey +
1

2
x2 = 2.

Solution: Note that f(x, y) is defined for all pairs (x, y) in R2, so the critical
points of f(x, y) are those such that fx = fy = 0. First, we compute the first

Page 7 of 13



MATH 105 101 Final Exam 2011 Winter Term 2 Solutions

order partial derivatives:

fx(x, y) = yey + x, fy(x, y) = xey + xyey = (y + 1)xey.

Observe that fy(x, y) = 0 for y = −1 or x = 0. If x = 0, then fx(0, y) = yey = 0
for y = 0. If y = −1, then fx(x,−1) = −e−1 + x = 0 for x = e−1. Thus, we
get two critical points (0, 0) and (e−1,−1).

(b) Classify each critical point you found as a local maximum, local minimum, or a
saddle point of f(x, y).

Solution: To classify the critical points, we need to find the second order
partial derivatives:

fxx(x, y) = 1,

fyy(x, y) = xey + (y + 1)xey = (y + 2)xey,

fxy(x, y) = (y + 1)ey.

Recall that the discriminant is D(x, y) = fxxfyy − f 2
xy. Using the Second

Derivative Test, we get:

• At (0, 0), fyy(0, 0) = 0, fxy(0, 0) = 1, and D(0, 0) = −1 < 0. So, (0, 0) is
a saddle point.

• At (e−1,−1), fyy(e
−1,−1) = e−2, fxy(e

−1,−1) = 0, and D(e−1,−1) =
e−2 > 0. Since fxx(e

−1,−1) = 1 > 0, the point (e−1,−1) is a local
minimum.

8. (a) The Maclaurin series for arctan(x) is given by:

arctan(x) =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
,

which has radius of convergence equal to 1. Use this fact to compute the exact
value of the series:

∞∑
n=0

(−1)n

(2n+ 1)3n
.
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Solution: Note that:

∞∑
n=0

(−1)n

(2n+ 1)3n
=
∞∑
n=0

(−1)n

(2n+ 1)(
√

3)2n

=
√

3
∞∑
n=0

(−1)n

(2n+ 1)(
√

3)2n+1

=
√

3 arctan

(
1√
3

)
=
√

3
(π

6

)
.

(b) Find the limit, if it exists, of the sequence {ak}, where

ak =
k! sin3 k

(k + 1)!
.

Solution: Since −1 ≤ sin3 k ≤ 1, we have:

− 1

k + 1
≤ sin3 k

k + 1
≤ 1

k + 1

− 1

k + 1
≤ k! sin3 k

(k + 1)!
≤ 1

k + 1
.

Since lim
k→∞
− 1
k+1

= lim
k→∞

1
k+1

= 0, by Squeeze Theorem, we have that:

lim
k→∞

k! sin3 k

(k + 1)!
= 0.

(c) Solve the differential equation:

dy

dx
= xex

2−ln(y2).

Solution: We have:

dy

dx
=
xex

2

y2
⇒ y2 dy = xex

2

dx.
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Integrating each side separately, we get:∫
y2 dy =

y3

3
+ C.

Using a direct substitution u = x2 and du = 2x dx, we get:∫
xex

2

dx =

∫
1

2
eu du =

1

2
ex

2

+ C.

Thus, a general solution to the differential equation is:

y3

3
=

1

2
ex

2

+ C.

(d) Identify and sketch the level curve corresponding to z = e of the function:

z = ex
2+4y2 .

Label the axes of your graph and plot the coordinates of at least four points on
the level curve.

Solution: The level curve corresponding to z = e is:

e = ex
2+4y2 ⇒ 1 = x2 + 4y2,

which is an ellipse centered at (0, 0) with x-intercepts (±1, 0), and y-intercepts
(1,±1/2).

(e) There are two boxes containing two balls each. The balls in the first box are
numbered −1 and 1, the balls in the second box are numbered 0 and 2. An
experimenter draws a ball from each box and observes the number of each ball.
Define a random variable X whose value is two times the number of the ball drawn
from the first box plus three times the number of the ball drawn from the second
box. In other words,

X = 2(number observed from box 1) + 3(number observed from box 2).
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Write down all possible values of X and use this to compute the expected value of
X.

Solution: The possible outcomes are: X = −2 (with probability 1/4), X =
4 (with probability 1/4), X = 2 (with probability 1/4), and X = 8 (with
probability 1/4). So, the expected value of X is:

E(X) = 1/4(−2) + 1/4(4) + 1/4(2) + 1/4(8) = 3.

(f) Find a bound for the error in approximating:∫ 1

0

[e−2x + 3x3] dx

using Simpson’s Rule with n = 6 subintervals. There is no need to simplify the
answer. Do not write down the Simpson’s rule approximation Sn.

Solution: So, a = 0, b = 1, n = 6 and f(x) = e−2x+3x3. Thus, ∆x = b−a
n

= 1
6
.

We have:

f ′(x) = −2e−2x + 9x2, f ′′(x) = 4e−2x + 18x,

f ′′′(x) = −8e−2x + 18, f (4)(x) = 16e−2x.

So, |f (4)(x)| = 16e−2x. For 0 ≤ x ≤ 1, then 1 ≤ e2x ≤ e2, and 1 ≥ e−2x ≥ e−2.
Thus, 16 ≥ 16e−2x ≥ 16e−2, and we may choose K = 16. Hence,

E4 ≤
K(b− a)(∆x)n

180
=

16

180(66)
.

(g) For a certain function f(x), the following equation holds:

lim
n→∞

n∑
k=1

k

n2

√
1− k2

n2
=

∫ 1

0

f(x) dx.

Find f(x).

Solution: First, we recognize that the expression on the left hand side is that
of a right Riemann sum, which should have the form:

lim
n→∞

n∑
k=1

f(x∗k)∆x.
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So, by comparing with the given expression on the left hand side, we can

conclude that f(x∗k)∆x =
k

n2

√
1− k2

n2
. Furthermore, we have a = 0, b = 1,

and ∆x =
b− a
n

=
1

n
. So, f(x∗k) =

k

n

√
1− k2

n2
. For the right Riemann sum,

x∗k = xk = a+ k∆x = k
n
. So,

f(x∗k) =
k

n

√
1− k2

n2
= x∗k

√
1− (x∗k)

2.

Thus, the function f(x) itself is: f(x) = x
√

1− x2.

(h) Evaluate the indefinite integral: ∫ √
25x2 − 4

x
dx.

Solution: We use trigonometric substitution x = 2
5

sec(θ), and dx = 2
5

sec(θ) tan(θ) dθ.
Then,

√
25x2 − 4 = 5

√
x2 − 4/25 = 5

√
4/25 sec2(θ)− 4/25 = 2 tan(θ),∫ √

25x2 − 4

x
dx =

∫
2 tan(θ)

2/5 sec(θ)

2

5
sec(θ) tan(θ) dθ

=

∫
2 tan2(θ) dθ =

∫
(2 sec2(θ)− 2) dθ

= 2 tan(θ)− 2θ + C.

Since x = 2
5

sec(θ), we get cos(θ) = 2
5x

, and θ = arccos
(

2
5x

)
. In a right-angled

triangle, the adjacent side to θ is 2, and the hypotenuse is 5x, so the opposide

side is
√

25x2 − 4. Thus, tan(θ) =

√
25x2 − 4

2
. Therefore,

∫ √
25x2 − 4

x
dx =

√
25x2 − 4− 2 arccos

(
2

5x

)
+ C.

(i) Find an equation of the plane parallel to 3x − y + 4z = 13 passing through the
point (2, 1,−1).
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Solution: The normal vector of the plane given by 3x−y+4z = 13 is 〈3,−1, 4〉.
For planes that are parallel to 3x− y + 4z = 13, we may use the same normal
vector to describe them. Thus, an equation of the plane parallel to 3x−y+4z =
13 passing through the point (2, 1,−1) is:

3(x− 2)− (y − 1) + 4(z + 1) = 0⇔ 3x− y + 4z = 1.
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